As

N

Computer Science

AD-A278 951
\\\\\\\\\\\\\\\\\\l\\\“\\\\\\\\l\\\\\\\\\\\\

J
' The CMU Task Parallel Program Suite
« Peter Dinda Thomas Gross David O'Hallaron
5 Edward Segail James Stichnoth Jaspal Subhlok
;{' Jon Webb Bwolen Yang
March 1994
CMU-CS-94-131 Acc

: *““"' \ s MAY 061994D
(AP e

665

The CMU Task Parallel Program Suite

Peter Dinda Thomas Gross David O UHallaron
Edward Segall James Stichnoth Jaspal Subhlok
Jon Webb Bwolen Yang
March 1994
CMU-CS-94-131 Accesion For
NTIS CRAgy]
DTIC TAB
Unannounced 0

Justification

School of Computer Science
Carnegie Mellon University ¢SV
Pittsburgh, PA 15213 Distribution | T

Availability Codes

Avail and | or
Special

Dist

Abstract ﬂ'

The idea of exploiting both task and data parallelism in programs is appealing. However, identifyving realistic,
yet manageable example programs that can benefit from such a mix of task and data parallelisin s a major
problem for researchers. We address this problem by describing a suite of five application from the domains
of scientific, signal, and image processing that are of reasonable size, are representative of real codes, and can
benefit from exploiting task and data parallelism. The suite includes fast Fourier transforms. narrowhand
tracking radar, mulitibaseline stereo imaging, and airshed simulation. Complete source code for each example

program is available from the authors. DT l C

ELECTE
MAY 06 1934

G

This research was sponsored by the Advanced Research Projects Agency/CSTO monitored by SPAWAR under
contract N00039-93-C-0152, and also by the Air Force Office of Scientific Research under contract F49620-92 -1-0131.
The views and conclusions contained in this dochment are those of the authors and should not be interpreted as
representing the official policies, either express or implied, of the U.S. government.

Contact author: David O’Hallaron, droh@cs.cmu.edu.

+
rl

Keywords: Parallel programming, task parallelism, functional parallelism. parallelizing compilers, pro-
gram mapping

1. Introduction

There is growing interest in the idea of exploiting both task and data parallelism {1, 3. 4.5, 6, 7, 19]. There
are a number of practical reasons for this interest. For many applications, especially in the domains of image
and signal processing, data set sizes are limited by physical constraints and cannot be easily increased [19].
In such cases the amount of available data parallelism is limited. For example, in the multibaseline stereo
application described later in this report. the size of an image is determined by the cirenitry of the video
cameras and the throughput of the camera interface. Increasing the image size means buying new camceras
and building a faster interface, which may not be feasible. Since the data parallelism is limited, additional
parallelism must come from tasking. '

Another reason for the increased interest in task parallelism is that simulations are hecoming increasingly
sophisticated as they attempt to capture interactions among different physical phenomena. The phenomena
might represent different scientific disciplines, and different parts of the simulation might even be written by
different groups. For example, the airshed model described later in this report characterizes the formation of
air pollution as the interaction between the wind blowing and reactions among various chenucal species. It
is natural to model such interactions using tasking, where one task models the wind hlowing. and the other
task models the chemical reactions. Further, if the codes are written by different groups. task parallelism
may be the only feasible way to integrate the codes.

Applications that can benefit from a mix of task and data parallelism tend to be somewhat complicated
hecause they are typically composed of a collection of nontrivial functions. each of which is a sequence of
data parallel operations. Identifying and building representative example programs that are 1 manageable
size is a major stumbling hlock for computer science researchers who are not application domain experts,
We address this problem by describing a set of realistic example programs from the domains of scientific,
signal, and image processing that can benefit from a mix of task and data parallelism:

1. 1D fast Fourter transform.
2. 2D fast Fourier transform.
3. Narrowband tracking radar.
4. Multibaseline stereo.

Airshed simulation.

))

We identified these applications in the course of developing an integrated model of task and data parallelism
for the Fx parallelizing Fortran compiler [9, 19, 17, 18, 23] and have found them to be extremely helpful.

Complete Fortran 77 sources of the programns are available from the authors. Each program is fewer than
500 lines of code. The Fortran 77 sources are useful for a number of reasons. First, the sources provide
an unambiguous specification of each application, including input and output data sets. Second. there are
many models and dialects for task parallelism. Fortran 77 represents a lowest common denominator of sorts,
available to everyone. for describing the applications. Finally, the source code clearly identifies the obvions
sources of course-grained parallelism in the form of calls to subroutines. This enabled us, in all but one
case, to port the Fortran 77 programs to the Fx system with only minor modifications (the only exception
being the airshed simulation, which requires a dynamic model of task parallelisim that Fx does not currently
support). We invite other researchers who are interested in task parallelism to use these Fortran 77 sources
as the basis for writing the applications in their favorite task parailel dialect.

Section 2 briefly outlines a simple space of the different ways that task and data parallelism can he used
in the same program. Sections 2-6 describe the example programs and discuss briefly how they can inapped
onto a parallel system using a mix of task and data parallelism. Section T describes where to Hud the onfine
Fortran 77 codes and provides some more detail on their structure.

2. Combinations of task and data parallelism

Each program in our task parallel suite has the following form:

doi1=1,m
call T1()
call T2()
call T3()
enddo

There is an outer loop that iterates over m mput data sets. The body of the loop consists of ealls 1o three
task-subroutines. Each task-subroutine typically consists of a sequence of data-parallel starenients veon
array assignment statements or DOALL-like parallel loops) that can run on multiple processors. Depending
on the application, there may or may not be dependences across iterations of the outer loop and aunong the
task-subroutines. We can graphically represent the program using a task graph. as shown in Figure 1. Fach
node corresponds to a task-subroutine, and each arc corresponds to a data dependence hetween a pair of

task-subroutines.

T1 T2 T3

Figure 1 Example task graph

We can view different task and data parallel mappings for an application as points in a two-dimensional
space [18]. The first axis corresponds to different clusterings of task-subroutines. where each task-subroutine
in cluster runs on the same set of processors, and each cluster runs ou a unique set of processors. In some
cases, assigning two task subroutines to the same cluster reduees communication overhead, at the cost of
reduced parallelism. In these cases. there 15 a tension between reducing communication cost and inereasing,
parallelism.

If the input data sets for a cluster are independent. then that cluster can be replicated. Tor example, one
replicated instance of a cluster could process even numbered data sets and the other replicated instance could
process the odd numbered data sets. The degree of replication is captured by the second axis. Replication
is beneficial for task-subroutines that do not scale well.

Some examples of different combinations of task and data parallelism are shown in Figure 2. Figure 2(a)
shows the usual data parallel mapping where all task-subroutines are clustered onto all processors, with
no replication. Figure 2(b) shows a task parallel mapping where each task-subroutine gets its own cluster.
again with no replication. It may be desirable in some cases 1o replicate the data-parallel clusters, as
Figure 2(c}). Finally, a mix of task and data parallelism, using both clustering and replication. s shown in
Figure 2(d).

3. Fast Fourier transform

The fast Fourier transform (FFT) converts an input data set from the temporal/spatial doman to the
frequency domain, and vice versa. While it is an important algorithm in its own right. with numerous
applications in scientific, signal, and image processing, it is an especially interesting example program for
studying task parallelism becaunse it exemplifies a common computational pattern, i.e.. manipulate the data

Partitioning ——————»

il

Replication
(a) Data parallel \b) Task paraliel
mapping mapping
{c) Replicated data (d) Replicated data and
parallel mapping task parallel mapping

Figure 2: Combinations of task and data parallel mappings

row-wise, then manipulate the data column-wise. Uhis pattern appears i diverse applications such s
medical imaging [13], synthetic aperture radar imaging [15]. ADEsolvers. sonae beamtormmng and the eadar
and airshed programs described later i this docmment

More precisely. a discrete Fourter transform (DEFT) s a complex matrix-veetor product
y=1FI,r

where £ and y are cotplex vectors, and By = (fug s - ocmates such taa 0= 0 where

wn = cOS(27/n) — isin(2x/n) = 07T

and i = /=1. A fast Fourier transform (FFT) is an efficient procedure for computing the DET that exploits
structure in F, to compute the DFT matrix-vector product in O(nlogn) time. Higher dunensional FETS
are also defined. In general. an m-dimensional FFT operates on an m-dimensional marnix with o clements
in each dimension in O(n™ log n) time. See [20] for an excellent deseription of the namerons FET afgonthins
that have heen developed over the past 10 years.

3.1. 1D fast Fourier transform

If n = nynq, then a 1D FET can be computed using a collection of smaller independent 1D F471s {2050 20]
Starting with a view of the input vector r as an ny x ny array .1 stored in columu major order. perform
n, independent no-point FFTs on the rows of A, scale cach element a,, of the resulting array by a factor
of £, and then perform ns independent ny-point FFTs on the columns of 4. The final result vector g s
obtained by concatenating the rows of the resulting array. Figure 3 shows the task graph for the 1D FET

Input and output are sequences of vectors reshaped as 2D arrays. Nodes labeled trans perform a
teanspose operation, nodes laheled col FFTs perform a set of [FFTs on the columns of its imput array,
and the node labeled scale multiplies each element of its input array by a constant To explowt locahity
the memory subsystem. the program implements each set of row-wise operations as a transpose followed by
a set of column-wise operations. This specific order is an artifact of the fact that Fortran 77 stores matrices

2
o o
n,] | | T
I | | § R
/\ ///\: L P

O A / : col
knnput \— 9 trans \———p|{ scale ———p ' trans —— P FFTs ©- W wans - » output

/ /) :
~— - e \\\ o :

Figure 3: 1D FFT task graph for one mput veetor

in column-major order. If the example program were written in (', each columun-wise operation wonld be
implemented as a transpose followed hy a set of row-wise operations.

Mapping the 1D FFT onto a parallel system is easy in some ways and chiallenging o other ways The
problem 1s easy in the sense that the column-wise FF'Ts and the scaling operation are perfeetly parallel and
easily represented by conventional data parallel constructs. The column-wise FFTs are naturally »xpressed
with DOALL-like parallel loop construct such as the HPF independent DO statement [10]. The scaling
operation can be expressed with a Fortran 90 array assignment statement. However. the problem is chal-
lenging because the transpose operation requires an efficient redistribution of data, usually in the form of a
complete exchange where each processor must send data to every other proeessor. Since the input arrays
are independent, both replication and clustering of the task graph are possible

3.2. 2D fast Fourier transform

Computing the 2D FET is similar to computing the 1D FET. Given an oy« no mpnt areay AL pertorm n
independent ny-point FFTs on the columns of 1. followed by ny independent no-point 11 FETS on the rows
of A. Figure 1 shows the task graph for the 2D FEF'T. As with the 1D FFT. row-wise 'FTs are replaced by a
transpose followed by a set of column-wise FFTs. Notice that the 2D FF'T is simpler than the 1D FVT. No
scaling is required and there is one fewer transpose operation. Again. the input and output are sequences of
arrays. and since these arrays are independent, both rephication and clustering of the task araph are possable

2 —_— _—
— P
n, 1
— — i —
— S
T ocol ' * col ‘
input [FFTs ———-p lans ——p. FFTs -————ppt lrans --—— P Output

/

Figure 1: 2D FFT task graph for one mput array

4. Narrowband tracking radar

The narrowband tracking radar benchmark was devejoped by researchers at MIT Lineoln Laboratories 1o
measure the effectiveness of varnious multicomputers for their radar applic ‘tions [16]. 10 1s an imteresting
program for studying task parallelism because of its hard real-time requirements, and hecause the size of the
input data set is limited hy physical properties of the radar sensor. The task graph for the radar application
ts shown in Figure 5.

The program inputs data from a single sensor along ¢ = 1 independent channels. Fveey 5 milliseconds,
for each channel. the program receives d = 512 complex vectors of length » = 10, one after the other
the form of an r « d complex array A (assuming the column major ordering of Fortran). At a high-level,

.

i

-

— - — —
~ .

. comer 7 col scale ° hresh
' wm ~®ieers © 7 P oreduce - - P thresh .- e oulpul

[of
FON

input +

Figure 5 Radar task graph for one input array

each input array A is processed in the following way: (1) Corner turn the r x d impat array to forma d < r
array. (2) Perform r independent d-point FFTs. (3) Convert the resulting complex o« v array 1o a real
w < rosubarray. w = 0. by replacing each element « + b the @ < sabarray with ats seaded nagneade
Va2 + b2 /d. (4) Threshold each clement a, ;e of the subarray usig a cutolf that s a function of «,, and the
sum of the subarray elements. Elements that are above the threshold are set 1o unity: clements below the
threshold are set to zero.

The corner turn operation is equivalent to a transpose, so it can potentially induce 1 complete exchange
where each processor communicates with every other processor. As with the 1D FET. the column FFTs.
scaling, and thresholding operations can be naturally expressed using conventional data paradlel construets.
Further. the reduction operation requires an efficient. reduction mechamsm. However. the most interesting
computational property of the radar benchmark is the tact that the size parameters ol eoand e are
determined by mother nature and the properties of current sensor technology. The luxury of simply inereasimg
the data set size simply does not exist in this case. The cmount of avatlable low-level data parallehism s
limited, so additional paralielism must come from higher-level task parallehsm. Like the FFT examples,
input data sets are independent. so both replication and clustering of the task graph are possilile.

5. Multibaseline stereo

The multibaseline stereo uses an algorithm developed at Carnegie Mellon that gives greater accuracy i depth
through the use of more than two cameras [14]. It is an interesting program for studying task parallelism
hecause it contains significant amounts of both inter-task and intra-task comnmumication[22]. and beeause,
like the radar example, the size of the input data sets cannot be easily increased. Our mplementation is
adapted from a previous data-parallel implementation written in a specialized image processing language [21].

Figure 6 shows the task graph for the stereo program. Input consists of three m x n images acquired
from three horizontally aligned, equally spaced cameras. One image is the reference tmage. the other two
are maich images. For cach of '6 disparities, d = 0.....15, the first match image is shifted by o pixels,
the second image is shifted by 2d pixels. A difference 1mage is formed by computing the sum ol squared
differences between the corresponding pixels of the reference image and the shifted mateh umages. Next,
an error 1mage is formed by replacing each pixel in the difference image with the sum of the pixels inoa
surrounding 13 x 13 window. A disparity image is then formed by finding, for each pixel, the disparity that
minimizes error. Finally, the depth of each pixel is displayed as a simple function of its disparity.

The stereo program requires efficient mechanisms for broadcasting and reducing large data sets. The
computation of the difference images requires si. ple pointwise operations on the three imput nages and
can thus be naturally expressed with vortran 90 array statements. The computation of the error images s
somewhat more interesting, being similar to a convolution operation. The convolution can be modeled as a
DOALL where the loop iterations operate on overlapping regions of the image, which means that processors
must communicate before the loop iterations can begin executing. As with the FI'T and radar programs,
the data sets are independent, so both replication and clustering of the task graph are possible.

difference images

camera inputs

— disparity image

i 4/
T i reduce . ——pp display
A 3 /

e R e

Figure 6: Multibaseline stereo task graph for one input data set
6. Airshed simulation

The airshed simulation is significantly more complex than the previous examples. The multiseale airshed
model captures the formation. reaction. and transport of atmospheric pollutants and refared chemieal
species [11. 12]. It is an interesting application because it requires a dynamic task parallel model, and
because different parts of the application exhibit widely varving amounts of DOALL parallelism.

The airshed application simulates the behavior of the airshed model when it is applied 1o s chemieal
species. distributed over domains containing p grid points in cach of Latmospherte tayers. Typical values are
s = 35 species, 500 < p < 5000 grid points. and { = 5 atmospheric layers. Because of the multiscale wrid.
the entire northeastern United States can be modeled with problems in this size range. A total of about 200
chemical reactions are modeled.

The program computes in two principle phases: (1) horizontal transport (using a finite element method
with repeated application of a direct solver), followed hy (2) chemistry/vertical transport (using an iterative,
predictor-corrector method). Figure 7 depicts the task graph for one hour of simulated time. Input is an
[x s x p concentration array. Initial conditions are input from disk (inputhour). and in a preprocessing phase
for the horizontal transport phases to follow. the finite element stiffness matrix for cach layver is assembled
and factored (pretrans). The atmospheric conditions captured by the stiffness matrix are assumed to he
constant during the simulated hour, so this step is performed just once per hour. This is followed by a
sequence of steps — the number of steps is one of the initial conditions — where each step consists of a
horizontal transport phase, followed by a chemistry /vertical transport phase. followed by another horizontal
transport phase. Each horizontal transport phase performs ls backsolves, one for each layer and species. All
may be computed independently; however. for each layer {. all backsolves use the same factored matrix ..
The chemistry/vertical transport phase performs an independent computation for cach of the p erid points.
Output for the hour is an updated concentration array. which is then input to the next hour.

A number of interesting issues arise when we map the airshed to a parallel system. In the other example
programs we have discussed, the number of tasks is known at compile time. However, in the airshed program.
the number of transport/chemistry 'transport steps for each honr is not known until runtime, which implies
a dynamic model of task parallelism. Also, since the output concentration array of one hour is the inpat to
the next hour, replication of the task graph is not feasible, as it was with the previous example programs.

Another issue is that the preprocessing phase, the transport phase, and the chemistry phase have very
different levels of obvious DOALL parallelism because the sizes of the different dimensions of the concen-
tration array differ by orders of magnitude. For example, the preprocessing phase independently computes

/
1
[input § i
hour i
/ R 4
Number of steps
<4 changes each hour
/ honz "4~ /chem/ " honz output
i trans L » trans - hour
- \rans_ / o . 4

Figure 7: Task graph for one hour of the airshed simulation

stiffness matrices for each layer; unfortunately there are only 5 layers, so the obvious DOALL approach will
use 5 processors. To get better utilization, we must parallelize the computation for each layer, or we must
try to employ task parallelism to pipeline the computation for each layer. or both.

The issues involved in mapping the transport phase are particularly interesting. Sinee there are [= 5
lavers and s = 35 species. the transport phase could be casily timplemented with doubly nested DOALLs

that consist of 175 independent loop iteravions. For moderate sized paraliel systems, with say 6.4 processors,
this approach might work well. However, {or larger systetus, with say 512 processors. this approach uses
only a fraction of the processors. As with the preprocessing phase. we can get hetter utilization by either
parallelizing the sparse finite element compuration (a difficult task) or trying to use task parallelisn to
pipeline the computation.

The final issue stems from the fact that the preprocessing, horizontal transport. and chemistry/vertical
transport phases each operate on different dimensions of the concentration array. To exploit loeality in the
memory hierarchy, an implementation will most hikely insert the appropriate transpose operation before cach
phase. On a parallel system, this can induce a complete exchange where cach processor rommmnicates with
every other processor. Again, as with the FF'T and radar examples. we see the need for an efficient complete
exchange mechanism.

7. Distribution

Complete Fortran 77 sources for the application described in this report are available via anonyvmous F1P
from warp.cs.cmu.edu in file £x-codes/tpsuite/tpsuite.tar. World Wide Web clients like Mosaice and
Cello can use the following URL:

ftp://warp.cs.cmu. edu/usr/anon/fx-codes/tpsuite/tpsuite.tar

Each source program is a vamlla Fortran 77 code that operates on a sequence of inputs and produces a
sequence of outputs. There are no data files: all input data sets are produced automatically by the progrean.
Each program has fewer than 500 lines of code and consists of a single source and wnclude file. The include
file contains size constants that can be changed if the researcher wants to measure sealabiiity. Fach program
{except for radar) checks its output antomatically. The radar code prints a few hines of output which can
be easily verified by the user: directions are provided in the source code. Sampie outputs of the programs
running on a DEC 3000 Alpha workstation are also provided. Fach program (except the airshed) compntes
physically meaningful results. To keep the program at a manageable size, we have provided a version of the
airshed simulation that uses a synthetic workload for the innermost loops.

8. Concluding remarks

We have described a suite of realistic programs that can benefit from a mix of task and data parallelism.
Researchers in the areas of mapping, parallelizing compilers. and parallel programnung eavironments are
invited to use these programs to test and validate their ideas for exploiting task and data parallelism in
applications.

Acknowledgements

Many thanks to Takeo Kanade and his group at Carnegie Mellon for developing the original stereo code,
to Dennmis Ghiglia and s imaging group at Sandia National Laboratories who. in seneronsly providing s
with source code for their spotlight SAR application. showed us the importanee of the 20D FET as a researel
tool. and to Gi. Shaw and fellow researchers at MI'T" Lincoln Labs for providing € <onree code for the radar
benchmark in their technical report.

References
[AGRAWAL. (i.0 SUSSMAN. A0 AND Sanrz. Jo An integrated rontune and comptle-tine approach fop
parallelizing struetured and block structured applications. Teel, Rep CSSTR-GHE and UMIACS- TR
a3-04 University of Maryland, Depactment of Comiputer Setenee and UNTACS O ooz,

2} Baltey. D H. FFTs in external or hierarchical memory. he Jowrnal of Supercomputing | 1o,
23-35.

3] Cuaxpy. M., FosTER. L. KENNEDY. K.. KOELBEL, €. axD TSENG. € Intecrated support for sask
and data parallelisii. International Journal of Supcrcomputer Applecations 119930 16 appoear

(4] Cuapyan. B MEHROTRA. P VAN ROSENDALE. J.. axD Zivas 1A software architecinre for
multhdiserplinary wpplications: Integrating task and Jdata paeadielism. working paper Peb fa0d

(O] CHEUNG. AL axDp REEVEs. AL Funcuon-parallel computation o data-pacadlet coviroame ot Iy
Proceedings of the 1994 [ntcrnational Conferenee on Parallel Processong (St Charlos, 1L Yiaost 10005

[6] CroviELLa. M.. anxD LeBraxc. T. The search for lost eyeles: A new approach to paradlel program
performance evaluation. Tech. Rep. 179, Computer Science Departinent, University of Rochester, Der,
1993.

[7] FosTER. I.. axD C'HANDY. K. Fortran M: A language for modular parailel programming. ecly, Rep
MOS-P327-0992, Argonne National Laboratory, June 1992,

(8] GENTLEMAN, W, M., aND SaNDpE, G. Fast Fourier transforms for fun and peofit Tn Proc. VETPS
([966), vol. 29. pp. 563-57%.

[9] Gross., T.. HaseGawa. A HINRICHS. S.0 O'HaLLaron, DoooaND STRICKER. T The impact of
communication stvle on machine resource usage for the 1Warp parallel processor. [EEE Computer
{1994). to appear.

[10] G PERFuRMANCE ForTRAN Forta High Performance Fortran language specilication, version
1.0. Tech. Rep. CRPC-TR92225. Center for Research on Parallel Compuatation, Rice University, May
1993.

[11] McRAE, G., GoobIN, W._ AND SEINFELD. J. Development of a second-ueneration mathematical
model for urban air pollution - 1. model formulation. Atmospheric Environment 16,1 (1982). 679 6494

[12] McRak. G.. RUSSELL, A., AND Harvrey, R CIT Photochemecal Airshed Model - Nystems Mannal

(13]

[t1)

[16]

(17]

(18]

[22]

(23]

Carnegie Mellon University, Pittsburgh, PA, and Cadifornia Institute of Technology, Pasadenn, CAL bl
1992, ’

Nott, D.. Paury, J., MEYER. ., NISHIMURA, D)., AND MACOVSKI, A. Deblurring for non 2d-fouricor
transtorm magnetic resonance imaging. Magnelee Resonance in Medicane 25 (1992, 319- 333,

Oxuromt, Moo aND KaNADE, T, A multiple-baseline stoveo. [EEE Transactions on Pattern Analyses
and Machme Intelligence 13,1 (1993). 363 363,

PLIMPTON, S., MasTIN, G., aND GHIGLIA, D, Synthetic aperture radar image processing on parallel
supercomputers. In Proceedings of Supercomputing 91 (Albuquerque, NM, November 1991), pp. 446

452.

Staw, G, Gaser, R Martinez, D, Rocco, A, Ponuia, S. GERBER, A, NooNaN, J.. axp
TerrenBaunm., K. Multiprocessors for radar signal processing. “Tecly. Rep. 961, MI'T Lincoln Laboratory.
Nov. 10492, '

SUBHLOK, J. Automatic mapping of task and data parallel programs for efficient execution on mul-
ticomputers. Tech. Rep. CMU-CS-93-212, School of Computer Science, (Carnegie Mellon University,
November 1993.

SusnLokK, J., O'Harraron, D., Gross, T., Dinpa, P., AND WEBB, J. Communication and memory
requirements as the basis for mupping task and data parallel programs. Tech. Rep. CMU-CS-94-106,
Department of Computer Science, Carnegie-Mellon University, January 1994,

SUBHLOK. J.. Sticunorit, J.. O'Hanvaron, D., aND Gross. T. Exploiting task and data parallelism
on a multicomputer. In Proceedings of the ACM SIGPLAN Symposinm on Principles and Practice of
Parallel Programming (San Diego, C'\. May 19493), pp. 13-22.

VaN LoaN, C. Computational Frameworks for the Fast Fourter Transform. SIAM, Philadelphia. PA.
1992.

WEBB., J. Implementation and performance of fast parallel multi-baseline stereo vision. In Computer
Architectures for Machine Perception (Dec. 1993).

WEeBB, J. Latency and bandwidth consideration in parallel robotics image processing. In Supercom-
puting ‘93 (Nov. 1993).
YanG, B., Wens, J., SticunotH, J. M., O’llarLaronN, D. R., aND Gross, T. Dok Merge:

Integrating parallel loops and reductions. In Proc. Sizth Workshop on Languages and Compilers for
Parallel Computing (Portland, OR. Aug. 1993), vol. 768 of Lecture Notes in Compulcr Science, Springer

Verlag, pp. 169-183.

